

AFRL-RI-RS-TR-2008-92
In House Final Technical Report
March 2008

100X JOINT BATTLESPACE INFOSPHERE (JBI)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Public
Affairs Office and is available to the general public, including foreign nationals. Copies
may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2008-92 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

GEORGE O. RAMSEYER JAMES A. COLLINS, Deputy Chief
Work Unit Manager Advanced Computing Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MAR 2008
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Nov 03 – Sep 07
5a. CONTRACT NUMBER

In House

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

100X JOINT BATTLESPACE INFOSPHERE (JBI)

5c. PROGRAM ELEMENT NUMBER
62702F

5d. PROJECT NUMBER
459T

5e. TASK NUMBER
XJ

6. AUTHOR(S)

George O. Ramseyer, Lok Kwong-Yan, Richard W. Linderman

5f. WORK UNIT NUMBER
BI

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
AFRL/RITB
525 Brooks Rd
Rome NY 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RITB
525 Brooks Rd
Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2008-92

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# WPAFB 08-0964

13. SUPPLEMENTARY NOTES

14. ABSTRACT
A high-performance information management architecture, based upon the JBI reference implementation, was developed and tested.
The JBI reference implementation, developed at AFRL, specifies core services and a Common API (Application Program Interface)
(CAPI) for a network-centric platform to support Command and Control communications. The 100X JBI meets the conceptual goals
of the JBI by implementing the JBI CAPI and adhering to the standards established for the JBI core services. The 100X JBI was
used in several experiments to evaluate its performance and test the CAPI and core services implementation. This report summarizes
the experience in developing the 100X JBI reference implementation and the results of performance experiments.

15. SUBJECT TERMS
Information management, JBI, Joint Battlespace Infosphere, high performance computing, field programmable gate arrays,
Command and Control

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
George O. Ramseyer

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

74
19b. TELEPHONE NUMBER (Include area code)

N/A
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

 i

TABLE OF CONTENTS

 Page

LIST OF FIGURES…………………………………………..………………………….iv

LIST OF TABLES…………………………………………….…………………………v

ABSTRACT…………………………………………………………………………….vi

1. EXECUTIVE SUMMARY…………………………………….…………………1

2. JBI OVERVIEW ………………………………………………….………….….…………………3

2.1 Introduction…………………………………………………………………………………3

2.1.1 Information Objects………………………………………….………………….3

2.1.2 Interactions of Information Objects with JBI Servers……….………………….5

2.1.3 Malicious Code Embedded in Information Objects……….……………………6

2.2 JBI Services…………………………………………………………..….…………………7

2.2.1 Web Administration Services………………………………..…………………..7

2.2.2 Authentication Service…………………………………….…………………….9

2.2.3 Metadata Repository Service……………………………………..………….…10

2.2.4 Publish and Subscribe Services………………………………….…………..…10

2.2.5 Query Services………………………………………………………………….10

3 100X JBI SECURITY……………………………………………………………..………………11

3.1 Secure Shell Tunneling…………………………………..………………………………..11

3.2 Information Objects…………………………………………..……….…………………12

3.3 Authentication………………………………………………..……….………………….13

3.3.1 Web Administration……………………………….……….…………………..14

3.3.2 Users……………………………………………………….…………………...14

3.3.3 The Publish, Subscribe, Query and MDR…………………….………………..14

3.3.4 Kerberos…………………………………………….…….……………………14

4 100X JBI ARCHITECURE……………………………………………………………………….16

4.1 Communications………………………………………….…..………………………….17

4.2 Publishing…………………………………………………..……………………………18

 ii

4.3 Subscribing………………………………………………..……………………………..18

4.4 Brokering/Disseminating……………………………..…………………………….……18

4.5 JBI Connectors……………………………………………………….…………….……19

4.6 Query and Archive……………………………………………….……………….……..19

4.7 Architecture……………………………………………………….………….………....19

5 100X JBI SYSTEM SEQUENCE DIAGRAMS…………………………………….….…….....21

5.1 Publication……………………………………………………………….……....………21

5.2 Subscribe…………………………………………………………………….....………..23

5.3 Query………………………………………………………….…………….….….……25

5.4 Meta Data Repository……………………………………………………..…....………27

6 DISTRIBUTED INTERACTIVE HPC SYSTEM..……………………………….…….……..30

6.1 Overview…………………………………………………………………….…………30

6.2 Linux Clusters……………………………………………………………….…………30

6.2.1 Mach 2…………………………………………………………....………….32

6.2.2 Powell……………………………..………………………...….……………32

6.2.3 Koa…………………………………………………………....……………..33

6.2.4 Coyote……………………………………………………………...………..33

6.2.5 Heterogeneous HPC………………………………………………...….……33

6.2.6 Seafarer…………………………………………………..…………….……33

6.3 Testbed Applications……………………………………………………….….……….33

7 CORE SERVICE EXPERIMENTS………………………………………………….…………35

7.1 Publisher Catcher Capacity………………………………………....………………….35

7.1.1 Experiment……………………………………………..……………………36

7.1.2 Results……………………………………………….………………………38

7.2 End to End Single Clause Latency…………………………………………..…………39

7.2.1 Experiment……………………….……………………..…………………...39

7.2.2 Results……………………………………………………………………….40

7.3 Predicate Complexity………………………………………………………..…………42

7.3.1 Experiment………………………………………….……………………….42

 iii

7.3.2 Results…………………………………………….……………………………44

7.4 100X JBI Throughput……………………………………………..……………………..45

7.4.1 Experiment……………………………………………………………………..45

7.4.2 Results………………………………………………………………………….48

8 ALPHA TESTING OF THE 100X JBI………………………………………..………………….51

8.1 Overview…………………………………………………………………………………..51

8.2 Testing Parameters…………………………………………………………….………….51

8.2.1 Software Configuration………………………………………………………52

8.2.2 Hardware Configuration……………………………………………………..52

8.2.3 Software Testing Tools…………………………………………..…………..52

8.3 Summary of the Testing Results………………………………………………………..55

8.3.1 100X JBI Software Installation………………………………………………55

8.3.2 Static Code Analysis and Memory Profiling……………………..………….56

8.3.3 Stress Testing…………………………….……………………………………57

8.3.4 Direct Attacks……………………………………………..………………….57

8.4 Towards Beta Testing………………………………….………………………………..58

9 DEMONSTRATIONS……………………………………………….……………………………59

9.1 Swatchbuckler…………………………………………………………..………………59

9.2 Angel Fire………………………………………………………………………….…….59

9.3 Paradigms for Parallel Computing……………………………………………………..….60

10 YFILTER BROKERING………………………………………………………..………………..61

11 SUMMARY…………………………………..…………………………….……………………..62

12 REFERENCES……………………………………………………………………………………63

APPENDIX Symbols, Abbreviations and Acronyms………………………………..…64

 iv

LIST OF FIGURES

 Page

Figure 1. Metadata Only Information Object…………………………………..……….4

Figure 2. Metadata and Payload Information Object…………………………….………4

Figure 3. SSH Tunneling………………………………………………………….…….12

Figure 4. 100X JBI Data Flow Diagram…………………………………….....….…….13

Figure 5. Overview of the 100X JBI architecture………………………………….……16

Figure 6. Detailed Overview of the 100X JBI architecture……………………………..20

Figure 7. Publish System Sequence Diagram……….…….……………………………22

Figure 8. Subscribe System Sequence Diagram...24

Figure 9. Query System Sequence Diagram..26

Figure 10. Meta Data Repository System Sequence Diagram...29

Figure 11. Distributed Interactive HPC Testbed………………………………..……….31

Figure 12. 100X JBI Architecture Publisher Catcher Capacity……...………………….35

Figure 13. Information Objects Processed v. Number of Brokers……...……………….38

Figure 14. 100X JBI Architecture for end to end latency per predicate with a single

processor…………………………………………………………...…………….40

Figure 15. End to end latency v. the number of subscribers (predicate clauses)………..41

Figure 16. Architecture for end to end latency per clause with a single processor…….43

Figure 17. Predicate Complexity vs. End to End Latency……………………...……….44

Figure 18. Architecture for Throughput of 100X JBI……………………………….......47

Figure 19. 100X JBI Throughput Results………………………………………….……48

Figure 20. 100X JBI scalability…………………………………………………………49

Figure 21. Speedup of the 100X JBI verses the JBI 1.2 Reference Implementation……49

 v

LIST OF TABLES

 Page

Table 1. JBI Web Administration Service Commands…………………………...…..8

Table 2. JBI Authentication Service Commands………………………………..…....9

Table 3. DIHT Linux Clusters…………………………………………………….…31

Table 4. Publisher Catcher Parameters ……………………………………………...36

Table 5. Publisher Catcher Experimental Conditions………………………………..37

Table 6. End to End Latency Parameters…………………………………………….39

Table 7. Broker Latency Complexity Parameters……………………………….…...42

Table 8. Throughput Parameters……………………………………………….....….46

Table 9. Throughput Experimental Conditions…………………………………..….46

 vi

ABSTRACT

The goal of the 100X JBI project is to develop a high-performance information
management architecture that is based upon the JBI reference implementation. The JBI
reference implementation, developed at AFRL, specifies core services and a Common
API (Application Program Interface) (CAPI) for a network-centric platform to support
Command and Control communications. The 100X JBI meets the conceptual goals of the
JBI by implementing the JBI CAPI and adhering to the standards established for the JBI
core services. The 100X JBI was used in several experiments to evaluate its performance
and test the CAPI and core services implementation. This report summarizes the
experience in developing the 100X JBI reference implementation and the results of
performance experiments.

 1

1. EXECUTIVE SUMMARY

 This research addressed numerous technological challenges in developing the

necessary methodologies and tools for a speedup of the core services of the Reference

Implementation of the Joint Battlespace Infosphere (JBI). In the current world

environment, the amount of available information has dramatically increased,

compounding the problem of providing the right information to the right people in a

timely and accessible fashion. Potential adversaries have access to much of the same

information that we do. This dynamic world environment has established the necessity

that we surpass our adversaries in the timeliness that information resources can be

leveraged. This research investigated techniques that accelerated and scaled the baseline

JBI Reference Implementation by 100 times through the use of high performance

computers, parallel programming techniques and optimizations.

 It was the goal that the 100 X JBI optimized the performance of publish and

subscribe services that are required for, as an example, an Air Operations Center (AOC).

Such a system will allow either a 100 fold increase in the amount of information to be

processed by the JBI core services in the same amount of time, a 100 fold decrease in the

amount of time necessary to process the same amount of core information, or some

weighted combination of both. The purpose of this system was to accelerate the core

services of the Joint Battlespace Infosphere by two orders of magnitude so that the JBI is

scaled for use in a warfighting environment. The JBI is an information management

system which can be tailored to provide the right information to the warfighter at the

right time, without at the same time overwhelming the warfighter with extraneous

information.

 The system was tested utilizing the Defense Research and Engineering Network

(DREN), over which remote high performance computers were accessed in an interactive

mode. Two local high performance computers, Coyote and the Heterogeneous High

Performance Computer (HHPC), were accessed, as well as Seahawk at the Space and

Naval Warfare Center, San Diego (SSCSD), Powell at the Army Research Laboratory

(ARL), Mach 2 at ASC WPAFB, and the Koa Cluster at the Maui High Performance

 2

Computing Center (MHPCC). The accelerated core services of the JBI were

demonstrated within this distributed environment.

 The system was alpha tested, and a summary of the results are presented here.

The purpose of testing is to find faults, and revisions to the software were made during

testing to correct some of the faults. Other changes to the system will be made before

beta testing, while some of the faults are beyond the scope of this effort, and would need

to be incorporated at the reference implementation level.

 YFiltering has been explored as a way to rapidly broker information objects. A

brief summary of that work is presented here, and a come complete description will be

published in an additional government document. YFiltering is being integrated with the

100X JBI system, and additionally with the 100K Infosphere effort, an on-going 6.2

effort here at the Information Directorate. The 100K Infosphere effort is also integrating

the initial field programmable gate array work presented here into that information

management system.

 3

2. JBI OVERVIEW

 An overview of the Joint Battlespace Infosphere (JBI) is presented in this section.

2.1 Introduction

 The JBI is an information management system based on the publish/subscribe

distributed systems paradigm. The JBI provides a means for a Community of Interest

(COI) to share information in a centralized and organized fashion. JBI clients are

separated into two main groups, the publishers (producers of information) and the

subscribers (consumers of information). The users share information using data

primitives called information objects. Additional information on the JBI can be found in

the Reference Implementation Quick Start Guide (1).

2.1.1 Information Objects

 An information object consists of two components, the metadata and the payload.

Information objects are analogous to well-defined emails. Emails can also be separated

into two main parts, a message text body and data attachments. The main difference

between information objects and emails is that information objects have an exact format

that must be followed.

 Metadata is written as an Extensible Markup Language (XML) document that

describes the content, quality, condition, and other characteristics of data, which is in the

payload, represented in an information object, and are often described as “data about

data." Metadata may or may not have a payload associated with it. In Figure 1 is

presented a metadata weather related information object.

 4

<metadata>
 <weather>
 <temperature>
 <value>50</value>
 <scale>F</scale>
 </temperature>
 <location>
 <city>Kansas City</city>
 <state>Kansas</state>
 </location>
 </weather>
</metadata>

Figure 1. Metadata Only Information Object

 When the information object has a payload associated with it, then the data in the

payload must have an exactly defined format. This metadata then describes the payload

(i.e. file type and encoding) and any other related information. Typical formats include

the exact type (e.g. image, movies), and the format of that type (e.g. Microsoft Windows

bitmap (BMP), Joint Photographic Experts Group (JPEG), and Audio Video Interleave

(AVI)). In Figure 2 is presented a weather related information object that includes a

payload. Only the metadata would be processed by a JBI server.

<metadata>
 <weather>
 <temperature>
 <value>50</value>
 <scale>F</scale>
 </temperature>
 <location>
 <city>Kansas City</city>
 <state>Kansas</state>
 </location>
 </weather>
 <filetype>jpg</filetype>
</metadata>

Payload

Figure 2. Metadata and Payload Information Object

 5

 Actual JBI information objects are more tightly defined than the examples above,

and the exact specifications are presented in “JBI Detailed Design Description.” All

information objects are described by XML Schemas, which define the exact format of the

information object metadata. Before the server accepts a publication, the server first

validates the requested information object type with the Schema stored in the Meta Data

Repository (MDR). If a newly published information object satisfies the stored Schema

requirements, then that information object is accepted and processed. If the Schema

requirements are not met, then the information object is simply dropped.

 2.1.2 Interactions of Information Objects with JBI Servers

 There are two ways that information objects interact with JBI servers. The initial

interaction occurs when an information object first arrives at the publication service. The

publication service retrieves the stored Schema definition and validates the published

information object with that Schema definition. Validation is the process of ensuring that

the right XML elements are located at the correct relative locations, and that the value

types match the ones that were mandated in the Schema definition. This evaluation

process is completed on a structural level, and results in a simple true or false statement

that states whether or not the information object satisfied the stored definition.

 The second type of information object/JBI server interactions occurs during

Extensible Metadata Platform (XMP) Path Language (XPATH) predicate evaluations.

Subscriber and Query users supply XPATH expressions which specify a set of

requirements that define the type of information objects that are of interest. An XPATH

expression consists of one or more predicates, and a predicate consists of clauses. A

clause is a logical value comparison that results in a true or a false. For example,

/metadata/weather/temperature/value < 70 is a clause. A predicate is a logical

expression operating on multiple clauses, i.e. /metadata/weather/temperature/value < 70

AND /metadata/weather/temperature/scale = “F”.

 In the above examples, the exact element specified by the XPATH expression is

extracted from the XML file, cast into the type defined in the Schema definition, and then

compared to the provided static value. Though the information object values are actually

 6

extracted and interpreted by the JBI server, the values are only used for simple

comparisons, and are never processed.

2.1.3 Malicious Code Embedded in Information Objects

 The contents of the information object are never processed, and malicious code

that might be embedded into an information object can never affect the JBI server itself.

The only foreseeable avenue of adverse attack through an information objects is by

exploiting buffer overflow vulnerabilities in the XML parser that extract element values

and casts those elements into the appropriate types. These vulnerabilities are not a

problem as long as the latest software updates for the XML parser libraries are applied.

Another means of preventing such attacks is by ensuring that all variable length values

are limited to a maximum length that is less than the maximum assumed buffer length

used in the XML parser libraries.

 7

2.2 JBI Services

 There are six types of JBI services. These JBI services are web administration,

authentication, metadata repository, publish, subscribe, and query. Each of these services

is described below. In practice the JBI should remain operational at all times, which will

ensure that users are able to access information and information transportation services

when needed without time restrictions.

2.2.1 Web Administration Services

 The JBI Web Administration Service is primarily used by JBI system

administrators to maintain user accounts and JBI servers. In addition, administrators use

this service to make changes to the Information Object Repository (IOR) and the

Metadata Repository (MDR). Changes made to the MDR, which are immediately

implemented, only affect the JBI server and not the underlying system. The allowable

changes are displayed in the form of fill-in text boxes and expanding trees for privilege

assignment. All of the available commands are predefined, and are presented in Table 1.

 This service allows administrators to log onto the server to add and remove user

and information object descriptions. Administrators are also able to view the current

server status and statistics and to make changes to the server, such as forcing a server to

restart or flushing the repository contents. The following is a list of commands available

to the administrator. The get* commands require only read access while the others

require write access. The resulting changes affect the JBI server, but not the node on

which the server is deployed.

 8

Table 1. JBI Web Administration Service Commands
command purpose
getAccounts() obtain a list of user accounts
createAccount() create a new user account
modifyAccount() make changes to current account
deleteAccount() delete a current user account
getInfoObjectTypes() obtain a list of currently supported IO types
createInfoObjectType() add a new IO type into the JBI server
modifyInfoObjectType() make changes to an IO type (i.e. update schema)
deleteInfoObjectType() delete an IO type
getAccountRoles() obtain Roles that an account hold
setAccountRoles() give an account new Roles
getInfoObjectCatalog() obtain a summary of IOs currently in persistent store
archiveInfoObjects() place IOs in storage, no longer available for query
restoreInfoObjects() retrive IOs from storage
deleteInfoObjects() deletes IOs in persistent storage

 Administrators can grant clients access to the JBI service from a list of individual

hosts, from a community of interest (COI), and/or from other appropriate groupings.

Only administrators are allowed to make changes to the server. Administrators can be

further separated into individual administrative roles. All users that have been registered

with the JBI Web Administrators are allowed service access, and normal users are only

able to view data that they have been granted access to. The JBI itself is COI information

management system, and so all users would be part of a common COI.

 The administrative service uses the standard client and server web architecture. A

client is connected through a network to the server which resides on a high performance

computer (HPC). Data is transferred in a predefined text format. The data is sent to the

Web Administration service through a HyprtText Transfer Protocol Secure (https) POST

request method. Data is transferred in a predefined XML format, and is normally sent in

plain-text. Secure Shell (SSH) Tunneling provides end-to-end encryption to ensure that

the information remains confidential. This service listens on port 11010 and maintains

access and connection control for the JBI server. Before any user can use a JBI service,

the user must first authenticate with and obtain permission from this service. The

authentication service completes both user authentication and authorization functions.

User authentication ensures that the client is a valid user on the JBI system.

Authorization ensures that the user has the appropriate access rights.

 9

2.2.2 Authentication Service

 The JBI uses a role based access control system, which assigns each user one or

more roles that reflect the information object types and services that the user will need to

access. Before a user can use the Publish, Subscribe, Query and/or MDR services, the

user must first authenticate with the Authentication Service (Table 2). After successful

authentication, the user is able to connect to the services requested.

 The JBI utilizes the Role Based Access Control (RBAC) for fine-grained security

policy enforcement. Each information type has a list of roles that can be set for the user.

These roles fall into two categories, the administrator and the user. User roles are limited

in access, such that only the JBI can be accessed, but the user can not make any changes.

Administrators, on the other hand, can make certain changes.

Each information object has the following roles associated with it. A

username/password pair is sent to the server for authentication. The information is sent

through an http POST over a Secure Socket Layer (SSL) connection. POST is an http

request method which submits user data to the identified resource. The data is included

in the body of the request.

Table 2. JBI Authentication Service Commands

Role Privilege Purpose
publish user gives user permission to publish this IO type
subscribe user gives user permission to subscribe to this IO type
query user gives user permission to query this IO type
MDR user gives user read access to the MDR service
MDR admin gives user read and write access to the MDR service
admin admin gives user the privilege to make any changes to this IO type

 Each user can assume multiple roles at the same time. The administrator can mix

and match different roles to follow the principle of least privilege, which allows the

minimum possible privileges be granted to permit a legitimate action. Because most

users will require publish and subscribe services, those users will be assigned publish and

subscribe roles associated with the specific information objects that are needed.

 10

2.2.3 Metadata Repository Service

 An additional method for making changes is through the Metadata Repository

(MDR) Service. Like the Web Administration Service, MDR service users are able to

obtain a list of the currently supported Information Objects and the corresponding

Schema definitions. Users are also able to update current Schema definitions, and to also

add new ones. These changes are forwarded to the Information Management Staff (IMS)

for review. Once the changes are approved, the changes are finalized and the MDR is

updated.

2.2.4 Publish and Subscribe Services

 The Publish and Subscribe services are the most widely used basic services. The

Publish service is used to send Information Objects to the JBI server for distribution. The

Subscribe service is used by the user to register interest in a specific type of as

input/output (IO).

 By registering with the Subscribe service, subscribers automatically receive new

publications that match the criteria provided to the JBI server. Criteria are presented to

the JBI server through predicates in the form of XPATH expressions. Information

objects are archived in an Information Object Repository (IOR), which is a persistent

database. The JBI server itself does not decide whether or not an IO should be archived.

The publisher instructs the server on what it should do during the initial Publish

connection sequence.

2.2.5 Query Services

Query is the third basic JBI service, and is similar to Subscribe, except that the

archived Information objects are now of interest to the user. When new Information

objects are published into the JBI server, the Query users do not receive a copy of the

Information objects. However, when the user queries archived information and a query

matches stored information, then the payload and the metadata for that IO are sent to the

requestor.

 11

3. 100X JBI SECURITY

 The JBI Reference Implementation was parallelized in this effort to run more

rapidly on high performance computers and Linux clusters. There were additional

security concerns that were addressed so that not only could the 100X JBI be

implemented on networks, but also so that the new implementation could be accessed

interactively.

3.1 Secure Shell Tunneling

 The six services that were introduced in Section 2 are the services that users can

interact with. The 100X JBI server was deployed on High Performance Computing

(HPC) nodes, and the HPC’s are behind strict firewalls. Secure Shell (SSH) Tunneling is

used to move Information objects through the firewalls. SSH Tunneling provides a

secure means for clients to connect to JBI services without having to open up new ports

on the firewalls.

 SSH Tunneling (2) is a technology that allows packets from a client port to be

sent through an SSH connection to a specified server port. One can think of SSH

tunneling as a specialized Virtual Private Network (VPN) connection. SSH Tunneling

not only provides a means for port communications between a client and a server, but it

also provides security features.

 Access to the JBI server is restricted to users who have SSH access to the

machine where the server is running. This means that for the work presented here access

to the JBI server is limited to users who have access to the HPC center where the JBI

server is hosted. This feature provides the first level of defense, such that even though a

JBI user account might be compromised, the malicious user will not be able to connect to

the JBI server without that user first having SSH access to the HPC center.

 All of the data transported through the SSH tunnel are encrypted. This is an

important attribute since it provides confidentiality. In the current JBI, users authenticate

themselves by sending an XML document with their username/password in plain text.

 12

The confidentiality that SSH provides ensures that malicious users on the network are not

able to simply sniff the user’s account information.

 All client connections to the JBI rely on the underlying SSH connection. If the

SSH connection is broken or has been purposely taken down, client connections will also

be forcefully terminated.

Figure 3. SSH Tunneling

In Figure 3 is presented a more complete overview of SSH tunneling. This service

uses the HTTPS internet protocol, which is HTTP over a Secure Sockets Layer (SSL)

link, and is configured to listen to client connections on port 8443. The SSH protocol is

also used to provide a tunnel between the client and the JBI server.

3.2 Information Objects

 The 100X JBI operates on generic Information Objects, and only non-sensitive

information was managed in this prototype 100X JBI development. Proper security

precautions must be taken before any sensitive material is to be managed by the 100X

JBI. The level at which the service is run (user privileges), the level of access required

 13

(access to root or any other non-user accounts, indirect access via setuid, setgid, or other

means), and the security level of the network over which the software is installed must be

considered.

Figure 4. 100X JBI Data Flow Diagram

In Figure 4 is presented a diagram of data flow for the 100X JBI. This is a

standard web service that uses the request and reply interaction scheme. The only

difference between this service and a normal HTTP web administration service is that

normal HTTPS servers listen on port 443 and this service listens on port 8443.

Furthermore, access to this service must be preceded by obtaining access to the node on

which the service is running. In general this means that the user must obtain a Kerberos

ticket and then establish a SSH connection and setup port forwarding.

3.3 Authentication

 The Authentication service is central to the JBI, and is used by all the other JBI

services to ensure that users are permitted to exercise whatever task they are requesting.

Depending on the requested service, authentication takes on a different shape. Publish,

Subscribe, Query and MDR users must all first authenticate directly with the

 14

Authentication to obtain a Connection ID. Once a Connection ID is obtained, the user

can then connect with the specific service of interest.

 Web Administration users authenticate using a less direct method by sending their

credentials to the Web Administration service. This service then uses that information to

authenticate the administrator with the Authentication service.

3.3.1 Web Administration

 A Web Administration user sends authentication information to the Web

Administration service, and that service in turn authenticates the user with this

Authentication service. Authorization is done on a per-command basis. Whenever the

user initiates one of the commands described in Section 2.2.1, this Authentication service

is consulted to ensure that the user has the proper permissions to complete the command.

3.3.2 Users

 A user in this category authenticates with this service directly. Upon successful

authentication, the user will then establish a connection sequence with the specific

service he wants to use. The service will take the user’s information and consult with this

service to ensure that the he is authorized to use the requested service.

3.3.3 The Publish, Subscribe, Query and MDR

 The publish, subscribe, query and MDR services follow a similar procedure to

that of the user for establishing connections with users.

3.3.4 Kerberos

Firewalls, while offering security from deleterious and/or malicious effects from

outside a network, restrict the flexibility of an internet based network. To use the 100X

JBI as an information management system in the field, the distributed users would

necessarily be outside the firewall. Because the 100X JBI was developed to run on the

Distributed Interactive High Performance Computing Testbed (DIHT), which is based

upon the Defense Research and Engineering Network (DREN), there are firewalls rules

 15

imposed by the High Performance Computing Modernization Program (HPCMP) that

must be followed. To use any of the 100X JBI services, the user must first be

authenticated to access the assets of the DIHT.

Kerberos is a network authentication protocol, and was designed to provide strong

authentication for client/server applications by using secret-key cryptography. Users

must be running Kerberos software on the local computer and have a one-time password

SecurID card issued by the DoD’s High Performance Computing Modernization Program

(https://kirby.hpcmp.hpc.mil/). The SecureID utilizes a separate password or Personal

Identification Number (PIN) and an authenticator

(http://www.rsasecurity.com/node.asp/id=1156). The SecureID card supplements the

password based authentication mechanism by adding the additional requirement of a

passcode derived from a time-dependant code generated by the SecureID card. This tests

something you know and something you have, and are two categories or classes of

authentication mechanisms.

Kerberos is a two stage process. First the user authenticates with the

Authentication Service, which is run on a Kerberos Server. The server sends the user a

Ticket Granting Ticket (TGT). When the user wants access to a computer on the DIHT,

the user sends a TGT to a Ticket Granting Service (TGS), and the TGS returns a Session

Service Ticket (SST). The user then uses the SST to authenticate and access the DIHT

computer. The Authentication Service and the Ticket Granting Service are two different

entities, and can be hosted on the same server.

 If more than one computer is to be used on the DIHT, then SST’s for each

computer must be obtained. An issued SST has a set period of time before it expires. In

cases where extended use is required, either new tickets will need to be obtained, or

arrangements need to be made for longer duration tickets.

https://kirby.hpcmp.hpc.mil/
http://www.rsasecurity.com/node.asp/id=1156
http://www.rsasecurity.com/node.asp/id=1156

 16

4.0 100X JBI ARCHITECTURE

The architecture of the 100X JBI project is based on the AFRL JBI Reference

Implementation 1.2. The JBI Reference Implementation architecture adopted software

methodologies that provided maximum flexibility for experimenting with new features,

and was independent of performance. The conceptual framework for a net-centric

pub/sub system included a standard Common Application Programming Interface

(CAPI). This Reference Implementation was based on a proof of concept that has been

implemented to interoperate in a net-centric system environment.

The 100X JBI goals included a two-order of magnitude speedup over the

reference implementation. To achieve this goal, a two fold approach was implemented,

which focused on converting JAVA codes to C++, and then parallelizing the codes. The

architecture of the 100X JBI is based upon the JBI 1.2 Reference Implementation

architecture, which is presented in Figure 5.

Figure 5. Overview of the 100X JBI architecture.

 17

 Information objects arrive at the publisher interface, are sent to the broker which

sends the publication to repository, and/or matches the publication against earlier

subscriptions. When a match is found, the information object is forwarded to the

subscriber who requested it. If a query arrives at the publisher interface, that query is

compared to the stored publications in the repository, and if a match is found, the

resultant publication is forwarded to the requestor.

4.1 Communications

The first step in the implementation of the 100X JBI was to speed up the basic

communications. The configuration of the JBI reference implementation was changed to

bypass the Java Messaging Services (JMS) layer, and the Java JNI (JavaTM Native

Interface) communications software was replaced with a TCP/IP socket implementation

in C++. The communications changes affected the JBI core services implementation as

well as the CAPI library interface.

The JniConnection and JniConnectionService were the first Java components of

the reference implementation that were replaced in the 100X JBI. The initial change in

communications software made a significant improvement in speedup performance. As

expected, the C++ compiled code performed faster that the Java Virtual Machine-based

system. These initial results were encouraging, and language conversion from Java to

C++ was one of the principal approaches used for 100X JBI performance enhancements.

 JniConnection is the Java Native Interface (JNI) wrapper to call the C++ JBI

client libraries from Java. JniConnectionService is the Java Native Interface C++ code

that enabled 100X JBI clients in C++ or Java to communicate to the original JBI Java

server code that provided the security framework.

 18

4.2 Publishing

The publication service was the next piece of the JBI that was considered for high

performance implementation. Initially, publisher sequence support was added to the C++

JNI communications interface, and a publication catcher component was added to the

100X JBI server. The CAPI was tested to validate the connections to remote JBI servers.

The publication catcher received publications from CAPI clients and forwarded the

publications to the brokers with which it was configured to interoperate.

Publication services required Extensible Markup Language (XML) libraries to be

added to the implementation along with some other basic JBI utilities for constructing

messages and for control over exceptions. Initial testing of the Field Programmable Gate

Array (FPGA)-based XML filtering support was conducted by filtering messages passing

through the pubcatcher, although the broker had not yet been implemented.

4.3 Subscribing

Subscription services were added to the 100X JBI. The changes involved the JNI

implementation, the core services and the CAPI. Subscriber services included registering

subscriptions with a broker and establishing “object available callbacks” to receive

notification when brokers discovered publications that match the subscriptions.

4.4 Brokering/Disseminating

Brokering services match publications with interested subscribers, and metadata

comparisons determine the desirability of publications for subscribers. Registered

subscriptions that match a received publication are forwarded to the user through the

object available callback subscriber method. The broker uses a disseminator process to

distribute publications to users, which also avoids delays in sending requested

publications over possibly slow network connections. The broker used shared memory to

enhance its performance.

 19

4.5 JBI Connectors

The parallel distributed high performance 100X JBI used “JBI Connectors” to

handle distributed operations. In a 100X JBI information management system, there may

be several JBI servers, each implementing publication and subscription services. 100X

JBI connectors forward messages to remote JBI’s, where a subscription may be brokered.

The Message Passing Interface (MPI) was used to improve the performance and allow

100X JBI server scaling for high performance computer implementations. Peer services

allowed publication catchers to forward publications to remote 100X JBI servers. This

architecture allowed multiple publication catchers for each JBI.

4.6 Query and Archive

Publications can be available for users who are not connected when a publication

of interest is published. Users can request archival services when publishing. A query

function allows users to request archived documents using a syntax that was similar to the

subscription syntax. Along with the archival and query services, the ability to handle

payloads and, for enhanced performance, large memory-based payloads with metadata

were added to the 100X JBI.

4.7 100X JBI Architecture

 In Figure 6 is presented a more detailed overview of the 100X JBI architecture.

At the top of the figure is shown that the authorization credentials for publish requests

and subscription requests are sent to the Connector Manager, which then connects to the

Information Peer List. A more complete description of this process is presented in

Section 5.2.

 When incoming publications are received from other HPC’s and/or from

authorized clients, these publications are temporarily held in the Publisher Catcher.

There can be from one to m Publisher Catchers. When there is more than one Publisher

Catcher, then each Publisher Catcher is located on a separate processor. The publications

in the Publisher Catchers are sent to a Connector (a single processor), which then

transmits a replicate of the publication to from zero to three other HPC’s. If other HPC’s

 20

are being transmitted to, then the system has redundancy. The publication is also sent to

the next available Broker.

 There can be from one to n numbers of Brokers, and if more than one Broker is

being used, then each Broker is on a separate processor. A Broker compares the elements

of the metadata with the predicates for each subscription that has been previously

submitted. When a match is found, then the corresponding publication is sent by the next

available Disseminator (one to k total Disseminators), which then transmits the

publication to the client that had submitted the subscription.

Figure 6. Detailed Overview of the 100X JBI architecture

 21

5. 100X JBI System Sequence Diagrams

 In this chapter Unified Modeling Language (UML) System Sequence Diagrams

(SSD’s) are presented for the 100X JBI architecture. For each use case scenario, the

events that the user generates, the order that those events are generated in, and the

responses of the system to the generated event are listed.

5.1 Publication

In Figure 7 is presented the SSD diagram for the 100X JBI publication service.

After the Kerberos ticket is issued to the publisher, an SSH connection is requested

through Port 22 of the high performance computer or Linux cluster on which the JBI

server is located. When the connection is granted, a SSH tunnel is created from port

11010 on the local host to Port 11010 on the HPC. Authentication with the JBI server is

achieved through this tunnel. A unique Connection ID Number is issued by the JBI

server and transmitted back to the publisher through SSH tunneling.

The setup of the publication sequence then occurs, in which the Connection ID

Number, notification that this is a publication, the IO type, and the IOVer are SSH

tunneled to Port 11011 of the JBI server. The JBI server then issues a unique Publication

Sequence ID Number to the publisher by SSH tunneling.

The publisher then uses this unique Publication Sequence ID Number in future

communications with the server. If the publisher chooses to publish an information

object, the whole object is serialized and sent through the SSH tunnel to the server along

with the Sequence ID Number. Once the server acknowledges that the publication has

met the schema standards, a unique Object ID is sent back to the publisher. In the case

when acknowledgements are not request by the publisher, a unique ID is not sent back to

the publisher.

 22

Figure 7. Publish System Sequence Diagram

 23

5.2 Subscribe

In Figure 8 is presented the SSD for the 100X JBI subscribe service. After the

Kerberos ticket is issued to the subscriber, an SSH connection is requested through Port

22 of the high performance computer or Linux cluster on which the JBI server is located.

When the connection is granted, an SSH tunnel is created from port 11010 on the local

host to Port 11010 on the HPC. Authentication with the JBI server is achieved through

this tunnel. A unique Connection ID Number is issued by the JBI server and transmitted

back to the subscriber through SSH tunneling.

The setup of the subscription sequence then occurs, in which the Connection ID

Number, notification that this is a subscription, the IO type, the IOVersion, and the

XPATH predicate are SSH tunneled to Port 11012 of the JBI server. The JBI server then

registers the predicate for future matching of incoming publications. The predicate is

stored in a lookup table that any broker can access.

Should a publication arrive at the JBI server which matches the predicate data of

the subscription, then the sequence ID of the matching publication is delivered to the

subscriber by SSH tunneling by the JBI server. The subscriber immediately receives the

IO if the IO is less than 128x8 in size. If the size of the IO is large than this, then the

subscriber must send an acknowledgement back to the server before the server sends the

IO to the subscriber. Once the subscription is completed, the subscriber requests to the

JBI server that the subscription sequence be destroyed through Port 11012. The JBI

server acknowledges the request to the subscriber, and the subscriber SSH tunnels to the

JBI server that Ports 11010 and 11012 are to be closed. Through SSH tunneling the JBI

sever acknowledges to the subscriber that the ports are closed, and the subscription

sequence is completed.

 24

Figure 8. Subscribe System Sequence Diagram

 25

5.3 Query

In Figure 9 is presented the SSD for the 100X JBI query service. The query user

must first authenticate to request a Kerberos ticket from the Kerberos Server. When the

Kerberos ticket is issued to the query user, an SSH connection is requested through Port

22 of the high performance computer or Linux cluster on which the JBI server is located.

When the connection is granted, then SSH tunneling authentication is achieved from the

JBI server through Port 11010. A unique Connection ID number is issued by the JBI

server to the subscriber through SSH tunneling.

Next the setup of the query sequence occurs, in which the connection ID number,

notification that this is a query, the IO type, the IOVER, and the XPATH are SSH

tunneled to Port 11013 of the JBI server. The JBI server then issues a Unique Sequence

ID Number for the query by SSH tunneling to the query user. The JBI server then checks

the JBI repository for matching predicates.

A list of matching information objects is sent back to the query user and the query

user determines which resulting information objects he wants.

 26

Figure 9. Query System Sequence Diagram

 27

5.4 Meta Data Repositiory

In Figure 10 is presented the SSD for the 100X JBI Meta Data Repository (MDR)

service. The user of the MDR must first authenticate to request a Kerberos ticket from

the Kerberos Server. When the Kerberos ticket is issued to the user, an SSH connection

is requested through Port 22 of the high performance computer or Linux cluster on which

the JBI server is located. When the connection is granted, then SSH tunneling

authentication is achieved from the JBI server through Port 11010. A unique Connection

ID number is issued by the JBI server to the user through SSH tunneling.

The JBI server then searches for a matching Schema. If a matching Schema is

found, then the user is notified that a matching schema was located by SSH tunneling.

The user then makes a Schema request over Port 11014 by SSH tunneling, and the JBI

server SSH tunnels back the SCHEMA. The user then sends to the JBI server over Port

11014 by SSH tunneling a request to destroy the MDR sequence request, and the JBI

server by SSH tunneling replies that the MDR sequence request has been destroyed.

Next the setup of the MDR sequence occurs, in which the connection ID number,

notification that this is an MDR, the IO type, the IOVer, and the Update are SSH

tunneled to Port 11014 of the JBI server. The JBI server then sends a unique MDR

Sequence ID number by SSH tunneling to the user. The user then sends to the JBI server

the new Schema by Port 11014 by SSH tunneling, and the JBI server acknowledges back

to the user by SSH tunneling the receipt of the Schema request. The administrator of the

JBI server is notified that a new schema has been submitted for review. The user then

SSH tunnels the JBI server to destroy the MDR Sequence ID over Port 11014, and the

JBI server acknowledges to the user by SSH tunneling that it was destroyed. The user

then requests by SSH tunneling that the connection be closed through Port 11010, and the

JBI server acknowledges by SSH tunneling that the connection has been closed.

 Should a publication arrive at the JBI server which matches the predicate data of

the subscription, then the sequence ID of the matching publication is delivered to the

subscriber by SSH tunneling by the JBI server. The subscriber then requests to the JBI

server that the subscription sequence be destroyed through Port 11012. The JBI server

acknowledges the request to the subscriber, and the subscriber SSH tunnels to the JBI

 28

server that Port 11010 is to be closed. Through SSH tunneling the JBI sever

acknowledges to the subscriber that the port is closed, and the subscription sequence is

completed.

 29

Figure 10. Meta Data Repository System Sequence Diagram

 30

6. DISTRIBUTED INTERACTIVE HPC SYSTEM

6.1 Overview

 The Distributed Interactive HPC Testbed (DIHT) is an experimental testbed that

is hosted on the Defense Research and Engineering Network (DREN)

(http://www.hpcmp.hpc.mil/Htdocs/DREN/index.html), and was recently implemented

by the Information Directorate of the Air Force Research Laboratory to provide scientists

and engineers with capabilities for high performance computing that are distributed over

a wide geographic area with real-time interactive responsiveness. The mission of the

DoD’s High Performance Computing Modernization Program (HPCMP), which sponsors

the DREN, is to develop high performance computing (HPC) capabilities within the

DoD’s Research, Development, Test & Evaluation (RDT&E) community.

 The HPCMP accomplishes its mission by providing access to HPC machines to

the DoD community through three categories of sites. The Major Shared Resource

Centers (MSRC’s) house large supercomputers and provide computing cycles to users

across the nation. The Distributed Centers (DC’s) deploy more modest systems, satisfy

more local needs, and enable the host organizations to stay at the forefront of HPC

technology. The DC’s strive to develop new software applications and/or evaluate

advanced computing and communications technologies. There are also DoD User Sites

that are geographically dispersed on the DREN. The DIHT is a collaboration of one

MSRC, one DC and 2 User Sites that provide interactive and distributed capabilities.

Additionally, other distributed authorized users of the DIHT need only connect to the

DREN to gain access to the testbed.

6.2 Linux Clusters

 In Figure 11 is presented the locations of the distributed Linux clusters that are

integrated together on the DIHT, and a more complete description of the clusters is

presented in Table 3.

http://www.hpcmp.hpc.mil/Htdocs/DREN/index.html

 31

Figure 11. Distributed Interactive HPC Testbed

Table 3. DIHT Linux Clusters

Linux Computer

Cluster
Location Processors Memory I/O

Powell ARL MSRC
Aberdeen, MD

128 node dual
3.06MHz Xeon

2 GB DRAM

64 GB disk/node

Myrinet & GigEnet

100MB Backplane

Mach2 ASC MSRC
Dayton, OH

24 node dual 2.66
GHz Xeon

4 GB DRAM

80 GB disk/node

Dual GigEnet

Coyote AFRL

Rome, NY

26 node dual 3.06
GHz Xeon

6 GB DRAM

400 GB disk/node

Dual GigEnet

HHPC AFRL

Rome, NY

48 node dual 2.6
GHz Xeon Wildstar
II FPGA cards

2 GB DRAM

64 GB disk/node

2Gb Myrinet &
GigEnet

Seafarer SSCSD

San Diego, CA

24 node dual 3.06
GHz Xeon

4 GB DRAM

80 GB disk/node

Dual GigEnet

Koa MHPCC
Maui, HI

128 node dual Xeon 4 GB DRAM

80 GB disk/node

Shared file system

Dual GigEnet

 32

6.2.1 Mach 2

 At the Aeronautical Systems Center (ASC) MSCR is the Linux cluster Mach2,

which is a 24 node, 2.66 GHz dual Intel Xeon cluster with 4 GB Dynamic Random

Access Memory (DRAM) and 80 GB disk per node and dual gigabit Ethernet (GigEnet)

interconnection fabric. This system uses Red Hat Linux Enterprise 3 as its operating

system.

6.2.2 Powell

 At the Army Research Laboratory (ARL) MSCR is located the Linux Cluster

Powell, which is a 128 node, 3.06 GHz dual Intel Xeon cluster with 2 GB DRAM and 64

GB disk per node with Myrinet and GigEnet interconnection fabrics and a 100 MB

backplane. Powell is comprised of four different types of nodes: compute, storage, login,

and management. All nodes contain dual Intel XEON processors integrated with an Intel

7501 chipset, 512k of Level 2 cache and 2 GB of ECC-protected memory. The compute

and login nodes have 3.06 GHz processors while all others have 2.4 GHz processors. The

128 compute nodes total 256 processors and 256 GB of memory with a peak system

performance of 1.566 Teraflops. All compute nodes have a Myrinet 2000 interconnect

which offers 2 Gbps bandwidth into and out of each node. The interconnect is non-

blocking and supports MPI communications. The latency on the switch is less than 6μs or

250 MB/sec bi-sectional bandwidth.

 The storage nodes provide the cluster with an aggregate of 10 TB disk space,

divided among 5 file systems that are globally accessible and offer scalable parallel

performance via Sistina's Global File System (GFS). All of the nodes share a gigabit

Ethernet network which provides a high-performance communications conduit between

the storage nodes and the compute and login nodes. This network also connects to the

ARL MSRC backbone network, providing a high-performance path to the mass storage

archival system. In addition, all nodes have access to the Defense Research and

Engineering Network (DREN).

 33

6.2.3 Koa

 The 128 node, dual 3.06 GHz Intel Xenon Linux cluster called Koa is located at

the Maui High Performance Computing Center. This cluster has 4 GB of memory per

node, and the nodes are interconnected via gigabit Ethernet.

6.2.4 Coyote

 At the Information Directorate at the Air Force Research Laboratory is the Coyote

Linux Cluster, a 26 node dual 3.06 GHz Intel Xeon cluster with 4 GB DRAM and 400

GB disk per node and a gigabit Ethernet (GigEnet) interconnection fabric.

6.2.5 Heterogeneous HPC

 Also at the Information Directorate is the Heterogeneous HPC, a 48 node dual 2.6

GHz Intel Wildstar II Field Programmable Gate Array (FPGA) cluster with 2 GB DRAM

and 64 GB disk per node and 2 Gb Myrinet and GigEnet interconnection fabric.

6.2.6 Seafarer

 At the Space and Naval Warfare Systems Center, San Diego (SSCSD) is the

Linux cluster Seafarer, which is identical to Mach2.

6.3 Testbed Applications

 Among the early interactive applications of this testbed has been the testing of the

100X JBI information management system. Typical usage of the HPCMP’s HPC

resources is via batch mode - where users request some amount of processing time on an

HPC resource, submit their jobs to the resource’s batch queue, and wait for their jobs to

reach the top of the queue for execution. This could take several hours or even several

days - depending upon many factors. There exists a need within the DoD HPC user

community for an interactive capability in which the user requires the result within

minutes or even seconds.

 34

 One prominent justification for pursuing distributed computing (also known as

grid computing, networked computing, or meta-computing) is to leverage computer

resources that are perhaps tens to hundreds of times more powerful than is typically

housed at a single facility. But there are also two other, equally strong justifications –

namely: (1) In typical battlespace environments, the data (e.g., sensors) are inherently

geographically dispersed; hence distributing the computing resources close to the data

saves the bandwidth and latency required to communicate them to a centralized

processor. And (2) the “players in the game” (i.e., the warfighters) are inherently

dispersed hence having multi-source data-fusion and battle-planning processors close to

the local decision makers makes very good sense.

 It should be noted that this testbed is inherently well suited to explore paradigms

for network-centric warfare (whose requirements are inherently highly distributed and

interactive). It is expected that experimental results will benefit the Air Force’s C2

Constellation and Joint Battlespace Infosphere programs, the Navy’s FORCEnet

program, and the Army’s Future Combat Systems program.

 35

7.0 CORE SERVICE EXPERIMENTATION

 Several experiments were designed and run to determine the capacity and speed

of the 100X JBI architecture, and the results of these determinations were compared to

the JBI Reference Implementation 1.2. The capacities of publisher catchers and brokers

to process Information Objects were determined, and then the capacity of the overall

100X JBI to process and disseminate information objects were determined as a function

of the complexities of predicate complexities.

7.1 Publisher Catcher Capacity

 The publisher catcher receives the incoming information objects from clients

and/or other hpc’s, and holds those publications in a queue until the next broker is

available, at which time that publication is sent to that available broker for processing

(Figure 12). The publisher catcher sends both the metadata and the payload to the next

broker when the total size of the incoming publication is less than 128 kbytes. If the total

size is greater that 128 kbytes, then the payload is sent to memory, and only the meta data

is sent to the broker. As a broker processes an Information Object, whenever there is a

match, the Information Object is sent to the disseminator, which forwards that

Information Object to the requestor.

Broker 2

Broker 3

Broker n

Publisher
Catcher

Next
Available

Broker 1
Incoming

Publication

Figure 12. 100X JBI Architecture Publisher Catcher Capacity

 36

7.1.1 Experiment

 This experiment was designed to determine the number of information objects

that can be processed per time unit by a single Publisher Catcher. It was conducted on

the Heterogeneous High Performance Computer, and the information object sizes were 2

kbytes each. Additional Publisher Catcher experimental parameters are presented in

Table 4, and other more specific experimental details are presented in Table 5.

 In this experiment incoming information objects were submitted to one Publisher

Catcher. The information object was then sent through a queue to the next available

Broker. The experiment consisted of several iterations in which the number of brokers

was increased from 1 to 20, and the numbers of information objects processed per second

were recorded. For this experiment each broker was on a separate processor.

Table 4. Publisher Catcher Parameters

Computer Heterogeneous High Performance

Computer (HHPC)

Processor speed 2.6 GHz

Publication Size 2 kbytes

Publishing Processors 1

Broker Processors, n 1, 2, 4, 8, 16, 20

Disseminator Processors 1

 37

Table 5. Publisher Catcher Experimental Conditions

#Run #brokers #pub catchers #nodes
1 1 1 1
2 2 1 2
3 4 1 3
4 8 1 5
5 16 1 9

 38

 7.1.2 Results

 The results of the experiment to determine the Publisher Catcher capacity are

presented in Figure 13. With a one processor brokering system (Run 1), 8,200

information objects of 2 kbyte size were processed in one second. Increasing the number

of brokers to two (Run 2) increased the number of information objects being processed to

12,200 per second. Marginal increases to 13,000 information objects per second were

realized by increasing the number of brokering processors beyond two (Runs 3-6). From

the experimental results presented in Figure 13, the Publisher Catcher capacity was

determined to be 13,000 information objects per second, which corresponded with the

processing of 26 Mbytes per second.

Figure 13. Information Objects Processed v. Number of Brokers

Information Object Size = 2 kbytes

0

4000

8000

12000

16000

20000

1 2 4 8 16 20
Number of Brokers

In
fo

rm
at

io
n

O
bj

ec
ts

 p
er

 S
ec

on
d

 39

7.2 End to End Single Clause Latency

 The input to output latency of the 100X JBI was determined from the amount of

time necessary to process an information object. Of interest for this experiment was the

determination of the time required to completely process an incoming information object

with a predicate that consisted of a single clause on one processor. The number of

predicates (subscribers) was increased for iteration during the experiment, and the time to

completely process each iteration was measured.

7.2.1 Experiment

In Table 6 is presented the experimental parameters for the determination of the

end to end latency for a single clause for the 100X JBI on a single processor. The

specific 100X JBI architecture for this experiment is presented in Figure 14. This

experiment was conducted on the Coyote Computer, and both the 100X JBI

Implementation and the JBI 1.2 Reference Implementation were run on one processor,

respectively. The size of the information objects was 1.3 kbytes.

Table 6. End to End Latency Parameters

Computer Coyote

Processor speed 3.06 GHz

Publication Size 1.3 kbytes

Processors 1

Subscribers 1 to 184

 40

Figure 14. 100X JBI Architecture for end to end latency per predicate with a single processor

 This experiment was set up so that one client published a single information

object to the JBI server. The number of subscribers was incrementally increased from 4

to 184. The same clause, the trivial XPATH expression (/metadata/info/size>0), was

used by each of the predicates (subscribers). When the Broker received the information

object, it evaluated the clause and determined which subscribers requested the

information object. Since all of the subscribers had requested it, the information object

was then disseminated to all the subscribers. The end to end latency for this experiment

was the time from when the information object was first submitted to the publisher

catcher to when the last information object was disseminated to the last subscriber.

7.2.2 Results

In Figure 15 is presented a plot of the determined latency (ms) verses the number

of predicates (subscribers) for both the 1.2 JBI Reference Implementation and the 100X

JBI. Linear regression analyses have been performed on the data, and the calculated best

fitting straight lines are presented in the figure. The slope of the linear least squares fit

represented the increase in end to end latency per time unit incurred for additional

subscribers. Given this, the data showed that each subscriber added about 2.1 ms of

latency, on average, to the system for the JBI 1.2 Reference Implementation and 100 μs

Publisher
Catcher

Queue Broker

 Incoming
 Publication

 Disseminator

Network

 41

for the 100X JBI. The 100X JBI resulted in a 21 times improvement in incurred latency

when compared with the JBI 1.2 Reference Implementation. With 184 subscribers the

latency was 420 ms for the JBI 1.2 Reference Implementation, and 19 ms for the 100X

JBI implementation. Because both of these implementations were run on a single

processor, the improvement in the latency of the 100X JBI implementation was attributed

mainly to the faster execution of the C and C++ codes of the 100X v. the speed of JAVA

executions of the Reference Implementation.

Figure 15. End to end latency v. the number of subscribers (predicate clauses)

JBI 1.2.0.1 VS 100X JBI

y = 2.099x + 37.708

y = 0.1001x

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120 140 160 180 200

Number of Subscribers

End-To-End Latency (ms)

JBI 1.2.0.1(ms)
100X JBI-2 Sub Nodes (ms)
Linear (JBI 1.2.0.1)
Linear (100X JBI)

Network: Gigabit
Ethernet
Publishers: 1
Metadata Size: 1.3k
HitRate: 100%
Predicate - TRUE:
(/metadata/info/size>0)

JBI 1.2.0.1 VS 100X JBI

y = 2.099x + 37.708

y = 0.1001x

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120 140 160 180 200

Number of Subscribers

En
d-

To
-E

nd
 L

at
en

cy
 (m

s)

JBI 1.2.0.1(ms)
100X JBI-2 Sub Nodes (ms)
Linear (JBI 1.2.0.1)
Linear (100X JBI)

Network: Gigabit
Ethernet
Publishers: 1
Metadata Size: 1.3k
HitRate: 100%
Predicate - TRUE:
(/metadata/info/size>0)

 42

7.3 Predicate Complexity

 While the previous experiment focused on determining the increase in latency

observed by adding more subscribers (predicates), the following experiment focused on

the determination of how the complexity of each subscriber's XPATH expression affected

the 100X JBI implementation latency.

7.3.1 Experiment

 By definition, each XPATH expression is a predicate, each predicate is a

conjunction of clauses, and each clause is a comparison test between an element or an

attribute of the XML metadata and a value. For example, the simple predicate used in the

end-to-end latency test (/metadata/info/size>0) consisted of only one clause. An example

of a predicate with two clauses is (/metadata/info/size>0 and /metadata/info/size<2000).

 For this experiment the predicate complexity was defined as a variable of the

number of clauses within each predicate. The experimental parameters are presented in

Table 7. This experiment was configured with a single publisher publishing 1.3 kbyte

information objects, and with ten subscribers. In this experiment the complexity of the

predicates was changed. The architecture of this experiment is presented in Figure 16.

Table 7. Broker Latency Complexity Parameters

Computer Coyote

Processor speed 3.06 GHz

Publication Size 1.3 kbytes

Publishing Processors 1

Broker Processors 1

Number of Subscribers 10

 43

Figure 16. Architecture for end to end latency per clause with a single processor.

 Short circuiting is defined as when a system only evaluates as many clauses as

necessary to arrive at a final answer. For example, if an "or" was used as the conjunction

for two clauses and the first clause resulted in a true, it is unnecessary to evaluate the

second clause. Short circuiting would be deleterious for this experiment, and so only the

final comparison was true. Because short circuiting was prevented, this experiment

isolated the latency effects of one broker evaluating XML documents.

Publisher
Catcher

Queue Broker

 Incoming
 Publication

 Disseminator

Network

 44

7.3.2 Results

 In Figure 17 is presented a plot of the determined latency verses the number of

clauses per subscriber. A linear regression has been performed on these results, and the

calculated best fitting straight line is also presented in the figure. From the slope of the

line, a 10 clauses increase, (1 clause per subscriber for 10 subscribers) resulted in 41 μs

of additional latency for the 100X JBI implementation.

Figure 17. Predicate Complexity vs. End to End Latency

y = 0.0414x + 1.3598

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300 350

Clauses per Subscriber

La
te

nc
y

(m
s)

100X JBI
Linear (100X JBI-MUL)

Pubs: 1
Subs: 10

Predicates were designed
so that there were no "short
circuits"

 45

7.4 100X JBI Throughput

Previous experiments determined the publisher catcher's Information Object

handling rate, which was 26 Mbytes per second on the HHPC. In addition, to ensure that

the disseminator was not the bottleneck, the predicates used guaranteed that a specific

information object only met one of the subscriber's requirements. Therefore, only one

Information Object needed to be delivered by the disseminator.

7.4.1 Experiment

Since the publisher catcher and the disseminators were assured to handle the

requirements of the test, the 1 publisher catcher, n broker and 1 disseminator

configuration of the 100X JBI server was used for this experiment (Figure 18), where n is

the number of brokers. With this configuration, the pub catchers and disseminators were

placed on the same node and, except for the single broker configuration; all of the brokers

were placed on other nodes, such that each processor in a node hosted one broker. The

actual number of nodes used is shown in Table 8. The number of subscribers was set at

300, and each subscriber had a two clause predicate, which resulted in a 600 clause

brokering job. The number of clients (publishers) varied depending on the desired

publication rate. In Table 9 is presented the experimental parameters to determine the

maximum throughput rate.

 46

Table 8. Throughput Parameters

Computer Coyote

Processor speed 3.06 GHz

Predicates 300

Clauses/predicate 600

Publishing Processors 4-6

Publisher Catcher Processors 1

Disseminator Processors 1

Broker Processors 1 to 16

Subscribers 300

Table 9. Throughput Experimental Conditions

broker pub catcher disseminator
Run processors processors processors nodes

1 1 1 1 1
2 2 1 1 2
3 4 1 1 3
4 8 1 1 5
5 16 1 1 9

 47

Broker 2

Broker 3

Broker n

Publisher
Catcher

Queue

Broker 1
Publishers

4 to 6

Disseminator

Network

Figure 18. Architecture for Throughput of 100X JBI.

 48

7.4.2 Results

In Figure 19 are presented the results of the 100X JBI throughput experiments.

The maximum throughput rates achieved were 534, 1033, 2032, 3939, and 7036

information objects per second for 1, 2, 4, 8 and 16 brokers, respectively.

 In Figure 20 is presented the maximum number of information objects that were

processed in one second and the optimum number of information objects that could be

processed per second verses the number of brokers used. The 100X JBI implementation

was at 92% optimum for the 8 processor broker configuration, and 83% optimum with 16

brokers.

Figure 19. 100X JBI Throughput Results

Throughput Chart

0
1000

2000
3000

4000
5000

6000
7000

8000

0 2000 4000 6000 8000 10000

Publish Rate (io/s)

A
gg

re
ga

te
 R

ec
v

R
at

e
(io

/s
)

1
2
4
8
16

Brokers

- 300 subscribers
- Predicate ensures that
 each publication is delivered
 to exactly one subscriber
- .3% hit ratio
- 4-6 Publishers w ere used

 49

Figure 20. 100X JBI scalability

Figure 21. Speedup of the 100X JBI verses the JBI 1.2 Reference Implementation

Scalability

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

0 5 10 15 20

Number of Brokers

M
ax

 A
gg

re
ga

te
 R

ec
ei

ve
 R

at
e

(io
/s

) Max Rates
Optimum

Number of Times Speedup over baseline JBI (v1.2)

347
672

1322

2562

4578

0

500
1000

1500

2000
2500

3000

3500

4000
4500

5000

1 2 4 8 16
Number of Brokers

N
um

be
r t

im
es

 s
pe

ed
up

X Speedup

 50

When compared to the original JBI Reference Implementation 1.2 (Figure 21),

there was a total speed up of 347 times in terms of a single broker for the 100X JBI

Implementation, and 4578 times with the 16 broker configuration. The speedup of the

one broker system came from a combination of rewriting parts of the code that were

originally written in JAVA in C and C++, and from other code accelerations. Additional

acceleration was achieved by the parallelizing the code such that several processors were

simultaneously implementing the code.

 51

8. ALPHA TESTING OF 100X JBI

The purpose of testing is to find faults, and then by correcting those faults the

overall quality of the software product is improved. The usability attributes of the 100X

JBI system were independently tested in terms of the ease of installation, the adequacy of

the documentation, and the ease of operation. Additionally, the performed alpha test

evaluation focused special attention to security-related problems to assess the degree to

which the 100xJBI implementation has matured.

8.1 Overview

Testing was performed using a variety of tools and approaches to maximize both

depth and coverage within an aggressive schedule and limited budget. First, commercial

off the shelf (COTS) tools were utilized for static code analysis and memory profiling.

These tools provided excellent coverage at minimal cost, but only allowed validation

against a set of specialized known problems.

Next, a series of stress tests were performed that simulated conditions typically

found in operational environments, which tended to be less controllable compared to lab

environments. Tests in this category involved studying the impact of loaded computer

processor unit (CPU), network links and disks on critical 100xJBI functionality. These

tests were narrower in scope compared to static code checks and memory profiling.

Finally, sets of direct attacks against the system were developed ranging from

attacks launched with only network layer access to attacks that assumed corrupted clients.

The set of attacks explored in this thread was drawn from attack use cases developed

during the 2005 red team exercises under the OASIS Dem/Val program to test the JBI

Reference Implementation, and reflected conditions expected to be found in operational

environments. These attacks were highly focused on exploiting single vulnerabilities and

therefore provided the least amount of coverage but the most amount of depth.

8.2 Testing Parameters

The software and hardware configurations for alpha testing, and the software testing

tools, are presented.

 52

8.2.1 Software Configuration

The alpha testing was based on the following software and system configuration:

• Software Name: 100XJBI

• Software Version: 070203_3 released on May 15 2007

• Software Description: This release contained source code, executables,

and documentation for the 100xJBI C++ implementation of AFRL’s Joint

Battlespace

• Infosphere concept. This version of the 100xJBI was compliant with the

JBI Common API (CAPI) version 1.2.6

8.2.2 Hardware Configuration

For the purpose of testing the 100xJBI system, a small test bed was established

that consisted of 3 Linux servers connected via a standard network switch. All 3 servers

had identical hardware characteristics:

• CPU: Intel(R) Pentium(R) 4 CPU 2.66GHz

• Total Memory: 1032920 kB

• Network card: Intel Corporation 82546EB Gigabit Ethernet Controller

In addition, all 3 servers were installed with recently updated versions of the

Fedora Core release 6 Linux Distribution.

8.2.3 Software Testing Tools

This section describes the set of tools used during testing together with download

information for open-source tools.

• FlawFinder is a program that examined source code and reported possible

security weaknesses (``flaws'') sorted by risk level. It was very useful for

quickly finding and removing at least some potential security problems

before a program is widely released to the public.

(http://www.dwheeler.com/flawfinder/)

• Rough Auditing Tool for Security (RATS) is an open source tool

developed and maintained by Secure Software security engineers. Secure

http://www.dwheeler.com/flawfinder/

 53

Software was recently acquired by Fortify Software, Inc. RATS is a tool

for scanning C, C++, Perl, PHP and Python source code and flagging

common security related programming errors such as buffer overflows and

Time Of Check, Time Of Use (TOCTOU) race conditions.

(http://www.fortifysoftware.com/security-resources/rats.jsp)

• Wireshark is the world's most popular network protocol analyzer. It has a

rich and powerful feature set and runs on most computing platforms

including Windows, OS X, and Linux. Network professionals, security

experts, developers, and educators around the world use it regularly. It is

freely available as open source, and is released under the GNU General

Public License. (http://www.wireshark.org/)

• Valgrind is an award-winning suite of tools for debugging and profiling

Linux programs. With the tools that come with Valgrind, many memory

management and threading bugs can be automatically detect, avoiding

hours of frustrating bug-hunting while making programs more stable.

Detailed profiling can be preformed to speed up and reduce memory use.

The Valgrind distribution currently included four tools: a memory error

detector, a cache (time) profiler, a call-graph profiler, and a heap (space)

profiler. It ran on the following platforms: X86/Linux, AMD64/Linux,

PPC32/Linux, PPC64/Linux. Valgrind is Open Source / Free Software,

and is freely available under the GNU General Public License.

(http://valgrind.org/)

• Mudflap is a pointer use checking technology based on compile-time

instrumentation. It transparently adds protective code to a variety of

potentially unsafe C/C++ constructs that detect actual erroneous uses at

run time. The class of errors detected includes the most common and

annoying types: NULL pointer dereferencing, running off the ends of

buffers and strings, leaking memory. Mudflap has heuristics that allow

http://www.fortifysoftware.com/security-resources/rats.jsp
http://www.wireshark.org/
http://valgrind.org/

 54

some degree of checking even if only a subset of a program’s object

modules are instrumented.

• (http://gcc.gnu.org/wiki/Mudflap_Pointer_Debugging), and

• (http://gcc.fyxm.net/summit/2003/mudflap.pdf)

• Mpatrol is a link library that diagnoses run-time errors caused by the

wrong use of dynamically allocated memory, including writing to free

• memory and memory leaks.

• (http://www.cbmamiga.demon.co.uk/mpatrol/)

• Iproute2 is usually part of a package called iproute or iproute2, and

consists of several tools, of which the most important are ip and tc. ip

controls IPv4 and IPv6 configurations, and tc stands for traffic control.

(http://linux-net.osdl.org/index.php/Iproute2)

• Cpuburn is designed to heavily load CPU chips. Under cooled, over

clocked or otherwise weak systems may fail causing data loss (file system

corruption) and possibly permanent damage to electronic components. Use

this program at your own risk.

• (http://linux.softpedia.com/get/System/Diagnostics/cpuburn-1407.shtml)

• Bonnie++ is a benchmark suite that is aimed at performing a number of

simple tests of hard drive and file system performance.

• (http://www.coker.com.au/bonnie++/)

• Iperf is a tool to measure maximum TCP bandwidth, allowing the tuning

of various parameters and UDP characteristics. Iperf reports bandwidth,

delay jitter, datagram loss. (http://dast.nlanr.net/Projects/Iperf/)

• Netcat is a featured networking utility which reads and writes data across

network connections, using the TCP/IP protocol. It was designed to be a

reliable "back-end" tool that can be used directly or easily driven, by other

http://gcc.gnu.org/wiki/Mudflap_Pointer_Debugging
http://gcc.fyxm.net/summit/2003/mudflap.pdf
http://www.cbmamiga.demon.co.uk/mpatrol/
http://linux-net.osdl.org/index.php/Iproute2
http://linux.softpedia.com/get/System/Diagnostics/cpuburn-1407.shtml
http://www.coker.com.au/bonnie++/
http://dast.nlanr.net/Projects/Iperf/

 55

programs and scripts. At the same time, it is a feature-rich network

debugging and exploration tool, since it can create almost any kind of

connection needed and has several interesting built-in capabilities.

(http://en.wikipedia.org/wiki/Netcat)

• GDB, the GNU Project debugger, allows the user to see either what is

going on `inside' another program while it executes, or what another

program is doing at the moment it crashed. (http://sourceware.org/gdb/)

8.3 Summary of the Testing Results

The first direct result from testing effort was that the software was successfully

installed and ran the supplied test applications, which performed publish, subscribe, and

query operations. Deploying the 100xJBI outside of its lab environment was a major step

towards TRL 6 compliance, and it was discovered that were a number of issues of

varying severity during the course of testing the system. The documented details of these

issues resulted in 57 problem tickets, which fell into the following main categories:

8.3.1 Installation Testing

The installation procedure was quite complex. The installation scripts supplied

with the 100X JBI release provided insufficient documentation on main concepts (e.g.,

difference between cluster and single node install, Network File System (NFS) shares),

3rd party code requirements, and the relationship of the 100X JBI to the JBI Reference

Implementation.

Although the 100X JBI provided scripts for installing and starting the system, it

didn’t provide adequate monitoring capabilities to ascertain successful operations of the

overall system. There was no monitoring protocol to test the liveliness of processes. An

accidental crash of a PubCatcher process could lead to situations in which a PubCatcher

may remain in a crashed state for an extended period of time during low-usage phases,

which only would be noticed (reactively) when critical operations started failing.

A proactive monitoring protocol could be developed to detect process crashes

shortly after happening, and the processes could be quickly restarted (either automatically

or per human intervention) to recover from the outage before the system needed to

http://en.wikipedia.org/wiki/Netcat
http://sourceware.org/gdb/

 56

service the next critical operation. There was no tool support for clearing out payload

entries stored in the filestore directory on the NFS share.

In response to this, a documentation package was created that included install

directions, a 100X JBI client tutorial, a 100X JBI client API and platform specific

documentation.

8.3.2 Static Code Analysis and Memory Profiling

Numerous potential security vulnerabilities were tested for that could be exploited

to crash components and circumvent security measures. These issues have either been

addressed and fixed, have yet to be addressed but were noted, or were outside the scope

of this effort, but also have been noted. .

Memory leaks and corruption errors were identified in both the client-side CAPI

implementation and core-resident PubCatcher processes. Most worrisome in this category

were the memory corruption errors in the PubCatcher process, as it could be exploited to

develop buffer overflow attacks to take control of machines running the PubCatcher

processes. The major leaks were addressed as each was reported.

There were single points of failure for various components. Although all runtime

testing was performed in a cluster configuration with three servers, crashes of a single

process or corruption of single files directly caused a loss of availability and

confidentiality for various different components. MySQL single point of failure

vulnerability in the cluster configuration was identified. The crash of a single

PubCatcher process resulted in a direct failure of critical functionality to publish

information objects. BerkleyDB single point of failure vulnerability was also identified,

as was the NFS server that exported the share for storing the BerkleyDB data. This is a

result of the tools that the server was built with. Currently, there are no plans to migrate

to a different set of tools.

There were inconsistencies with the CAPI semantics. Improper exception

semantics were identified during testing which was likely introduced through by caches

within the 100X JBI. Furthermore, IOs with incorrect size values were silently being

dropped. This raised issues with the C++ interface of the CAPI in terms of requiring an

 57

explicit specification of the payload size as well as the absence of exceptions when IOs

were being dropped. This problem was noted, and will be considered at a later time.

8.3.3 Stress Testing

Subjecting the system to an environment with increased CPU, disk, network, and

application usage loaded that the PubCatcher file, which caused the PubCatcher to lock

after 1024 client connects. Also, creating multiple (successive) publisher sequences and

their activation caused a large latency variance. There is a limitation of how many clients

can be connected to a pubcatcher. The system has to be configured according to the

number of pubcatchers to handle the desired number of clients.

The crash of a single PubCatcher process resulted in direct failure of critical

functionality to publish information objects. Part of this problem stemmed from the

inherent failure semantics that come with Message Passing Interface – 2 (MPI-2). While

it may make sense to terminate all processing upon observing a single process crash in a

scientific computation environment, such semantics are not desirable for a 100X JBI that

services real-time mission critical applications that needs to continue to provide service

even under attack. This is a design flaw in MPI, in which if one part of an application

ceases to function, the whole application closes.

Currently, MPI is the community standard, and there are no immediate plans to

migrate to a different library for the 100X JBI, although alternatives to MPI are being

explored in other on-going projects. Interestingly enough, the 100X JBI is one of the

information management systems being evaluated as a possible alternative for MPI for

uses such as this. The number of publishers is independent of the number of subscribers

in this paradigm, so that failure or addition of nodes does not affect its operation.

8.3.4 Direct Attacks

Running COTS attacks against the PubCatcher affected critical functionality.

Also, TCP connection floods resulted in the unavailability of the PubCatcher. Sending a

random stream of bytes over a single connection to port 11011 of the PubCatcher caused

legitimate publish functionality to be blocked. Rogue clients could also flood the system

with a large number of IO’s and deny service to legitimate clients. These issues have not

yet been addressed.

 58

Weaknesses in handling of sensitive password information and policy settings

were also observed. MySQL passwords were stored in clear text in

ConnectionService.cnf, which is world readable and stored on an NFS share. Also,

privilege separation established by the JBI reference implementation was weak in that the

cmp user could change MySQL access tables. These issues were raised in the

documentation and rely on the administrators’ knowledge of MySQL and UNIX to secure

the installation.

8.4 Towards Beta Testing

The purpose of testing is to find faults, which can then be corrected. The results and

recommendations of the Alpha Testing are being evaluated, and necessary changes are

being incorporated into the 100X JBI software. Some of the changes are being

recommended to be incorporated into the JBI Reverence Implementation, as they are

generic to all of the different versions of the JBI.

 59

9 DEMONSTRATIONS

Among the many notable demonstrations of the 100X JBI Information Management

software that have been proposed include the Swathbuckler Experiment, the Angel Fire

Experiment, and the Paradigms for Parallel Computing.

9.1 Swathbuckler

A prototype 100X JBI was demonstrated by the Air Force Research Laboratory as

the information management system for exploiting real-time formed Synthetic Aperture

Radar (SAR) images as they were acquired in an airborne experiment. The prototype

was used for two information management systems, one for the embedded system and

one for the data repository.

All communications between clients were defined by XML schemas, which allowed

clients to be developed separately and led to rapid prototyping and deployment. The

Swathbuckler user console provided simultaneous access to performance chart displays,

algorithmic statistics, meta-data moving maps, and image display interfaces.

Additionally control of the mission data, data collection types, and history were provided.

All the nodes regularly published status and subscribed to commands utilizing the

prototype.

 The security provided by the prototype 100X JBI implementation was crucial for

connecting the remote user to the real-time system. The prototype used private

networking including tunneling technology to allow communication connections over

insecure networks. In this case a JBI client connected from the airplane over the internet

to a JBI server at a remote location, and other users to connect in real time to

communicate and receive information from the airplane.

9.2 Angel Fire

The 100X JBI has been proposed as an information management system for the

Angel Fire, a Los Alamos National Laboratory/Air Force Research Laboratory persistent

city-sized surveillance program. Angel Fire is in fact an airborne high-resolution

imaging and dissemination system, and provides real-time imaging capabilities. The total

 60

infrastructure would enable users to quickly and easily sort through hundreds of terabytes

of image data to publish important metadata imagery acquired at a specific time, the

ability to subscribe to imagery and metadata regarding specific locations, and the ability

to overlay video over maps.

9.3 Paradigms for Parallel Computing

As briefly discussed in section 8.3.3 of this report, the 100X JBI software, and the

developing 100K JBI software, is being evaluated at Arizona State University by Dan

Stanzione for the User Productivity Enhancement and Technology Transfer (PET)

Program of the DoD’s High Performance Computing Modernization Program. In

particular, the service – orientated approach provided by the 100X JBI, and its fault

tolerant attributes inherent in a publish-subscribe information management, make this in

principle an ideal system for passing information between hundreds to thousands of

nodes.

 61

10 YFILTER BROKERING

The YFilter is a system designed for XML brokering task. In this system when a

predicate is processed, the resultant products are shared with as many other processors as

possible, thus reducing the amount of redundant processing between predicates as

possible. This sharing reduces the total time required to evaluate all predicates for a

given Information Object (IO). The concepts from the YFilter were implemented and

extended in the C++ language, thus increasing the processing speed form the YFilter’s

native implementation. The resulting reduction in brokering time can enable greater

scalability in the JBI.

The YFilter Broker has been integrated with the 100X JBI system, and in that

implementation the YFilter was the default broker, and was tested on the AFRL Coyote

High Performance Computing cluster. The improvements described in this paper yielded

up to a 15 fold decrease in brokering latency and up to a 15 fold increase in system

throughput when compared with the prior software broker. A report titled “Using YFilter

Concepts for Fast Brokering in the JBI” authored by Justin M. Fiore, Lei Zhao and

Vincent J. Mooney III of the Georgia Institute of Technology is being published as a

separate government report.

 62

11. SUMMARY

The results of the experiments designed to evaluate the core service speedups of the

100X JBI architecture have shown speedups of up to 4578 times verses the JBI reference

implementation. The resultant 100X JBI system has been alpha tested, faults uncovered

by that testing are being corrected, and beta testing will occur under the Real Time

Infospaces effort.

The 100K Infosphere effort, another ongoing effort, will integrate together the

relevant parts of the reference implementation, the 100X JBI system, the field

programmable gate array efforts, and the YFILTER results, to speed up the core services

of the 100X JBI by 5 orders of magnitude.

 63

12 REFERENCES

1. AFRL/IFSE, Reference Implementation Quick Start Guide, Core Services

Reference Implementation Version 1.2.6, 14 Dec 2005.

2. Hatch, Brian, “SSH Port Forwarding.” Infocus, 06 January 2005

(http://www.securityfocus.com/infocus/1816).

http://www.securityfocus.com/infocus/1816

 64

APPENDIX Symbols, Abbreviations and Acronyms

100X One hundred times speedup

AFRL Air Force Research Laboratory

C++ A general purpose computer programming language. Originally
known as C with Classes

CAPI Common Application Programming Interface

http HyperText Transfer Protocol

IOR Information Object Repository

IMS Information Management Staff

IP Internet Protocol

JBI Joint Battlespace Infosphere

JMS Java Messaging Services

JNI JavaTM Native Interface is a standard programming interface for
writing Java native methods and embedding the JavaTM virtual
machine into native applications. The primary goal is binary
compatibility of native method libraries across all Java virtual
machine implementations on a given platform.

JniConnection JniConnection is the Java Native Interface (JNI) wrapper to call
our c++ JBI client libraries from java

JniConnectionService The Java Native Interface C++ code that enables 100X JBI
clients in C++ or Java to communicate to the original JBI Java
server code that provides the security framework.

MDR Metadata Repository

MPI Message Passing Interface

POST Submits user data (e.g. from a HTML form) to the identified
resource. The data is included in the body of the request.

RBAC Role Based Access Control

SSH Secure Shell (protocol)

SSL Secure Socket Layer

VPN Virtual Private Network

 65

XML Extensible Markup Language

XMP Extensible Metadata Platform

XPATH XMP Path Language

YFilter A single Nondeterministic Finite Automaton which combines

multiple queries into a single query.

	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	1. EXECUTIVE SUMMARY
	2. JBI OVERVIEW
	3. 100X JBI SECURITY
	4.0 100X JBI ARCHITECTURE
	5. 100X JBI System Sequence Diagrams
	6. DISTRIBUTED INTERACTIVE HPC SYSTEM
	7.0 CORE SERVICE EXPERIMENTATION
	8. ALPHA TESTING OF 100X JBI
	9 DEMONSTRATIONS
	10 YFILTER BROKERING
	11. SUMMARY
	12 REFERENCES
	APPENDIX Symbols, Abbreviations and Acronyms

